You're reading the public-facing archive of the Category Theory Zulip server.
To join the server you need an invite. Anybody can get an invite by contacting Matteo Capucci at name dot surname at gmail dot com.
For all things related to this archive refer to the same person.
Thursday the 27th of May, 17:00 UTC
Two-dimensional semantics of homotopy type theory (Michael Shulman)
The general higher-categorical semantics of homotopy type theory involves (∞,1)-toposes and Quillen model categories. However, for many applications it suffices to consider (2,1)-toposes, which are reasonably concrete categorical objects built out of ordinary groupoids. In this talk I'll describe how to interpret homotopy type theory in (2,1)-toposes, and some of the applications we can get from such an interpretation. I will assume a little exposure to type theory, as in Dan Christensen's talk from April, but no experience with higher toposes or homotopy theory. This talk will also serve as an introduction to some basic notions of Quillen model categories
Zoom: https://topos-institute.zoom.us/j/5344862882?pwd=Znh3UlUrek41T3RLQXJVRVNkM3Ewdz09
YouTube: https://www.youtube.com/watch?v=0uzk-hIuwXA
starting in 30 minutes!