Category Theory
Zulip Server
Archive

You're reading the public-facing archive of the Category Theory Zulip server.
To join the server you need an invite. Anybody can get an invite by contacting Matteo Capucci at name dot surname at gmail dot com.
For all things related to this archive refer to the same person.


Stream: theory: category theory

Topic: externalisation of non-Cartesian internal categories


view this post on Zulip Emily (May 20 2021 at 23:27):

(This question comes from MathOverflow. Since not everyone here is there and conversely, I figured it might be a good idea to ask this here too.)

In the context of category theory internal to a category (E,×,1E)(\mathcal{E},\times,\mathbf{1}_{\mathcal{E}}) with pullbacks and a terminal object, the process of externalisation builds an indexed category EC ⁣:EopCats2\mathbb{E}_{\mathcal{C}}\colon\mathcal{E}^{\mathsf{op}}\to\mathsf{Cats}_{\mathsf{2}} from an E\mathcal{E}-internal category C\mathcal{C}, defining a 22-functor

E ⁣:CatsEPseudoFun(Eop,Cats2)\mathbb{E} \colon \mathsf{Cats}_{\mathcal{E}} \longrightarrow \mathsf{PseudoFun}(\mathcal{E}^{\mathsf{op}},\mathsf{Cats}_{\mathsf{2}})

from the 22-category of E\mathcal{E}-internal categories to the 22-category of E\mathcal{E}-indexed categories.

When one replaces (E,×,1E)(\mathcal{E},\times,\mathbf{1}_{\mathcal{E}}) by a monoidal category (V,V,1V)(\mathcal{V},\otimes_{\mathcal{V}},\mathbf{1}_{\mathcal{V}}), one can still define internal categories to V\mathcal{V}, provided V\mathcal{V} is regular. This is the subject of Aguiar's PhD thesis, where the notion is defined and studied.

Question: Can one define externalisation for categories internal to V\mathcal{V}?